If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7^2+y^2=144
We move all terms to the left:
7^2+y^2-(144)=0
determiningTheFunctionDomain y^2-144+7^2=0
We add all the numbers together, and all the variables
y^2-95=0
a = 1; b = 0; c = -95;
Δ = b2-4ac
Δ = 02-4·1·(-95)
Δ = 380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{380}=\sqrt{4*95}=\sqrt{4}*\sqrt{95}=2\sqrt{95}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{95}}{2*1}=\frac{0-2\sqrt{95}}{2} =-\frac{2\sqrt{95}}{2} =-\sqrt{95} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{95}}{2*1}=\frac{0+2\sqrt{95}}{2} =\frac{2\sqrt{95}}{2} =\sqrt{95} $
| -8z+-24-12=4 | | 7(r+7)=5r+49 | | 11^2+y^2=144 | | -33-(-29)=x/5 | | 0=7x-3-4x-x | | x2-x-12=0 | | 36=6b/2 | | 2(5-3x)=x-4(3-x | | 1/7a=21/2 | | 10^2+y^2=144 | | x+97=31 | | 2(3m+3)-6=36 | | 2-(9-u)2+u=-50 | | x+|x|=0 | | 15x^2-6x-10=0 | | 2(b-5)+7b-8=-10-2(b+7) | | 27x+2=11x-4+70 | | X2+y2=144 | | 9y-45=-9(y-7) | | 2x-2x+7=5x-2x-23 | | 0=-3b-4b | | x+14=67 | | .12=2(x)^2+(20/x) | | 48+2*p=10p | | x+28=27 | | 3÷4(x-6)=12 | | 12=w−|−7| | | (4^x)*(3^(2x))=6 | | Z/6+5=7-z/6 | | 3x-2=30x+7 | | 24-5m=34 | | 3.5=x+8.4 |